PROPOSITIONAL LOGIC

based on

Huth & Ruan Logic in Computer Science: Modelling and Reasoning about Systems Cambridge University Press, 2004

The Language of Logic

- Logic: symbolic language for making declarative statements about the state of the world
 - declarative statements:

The train arrives late.

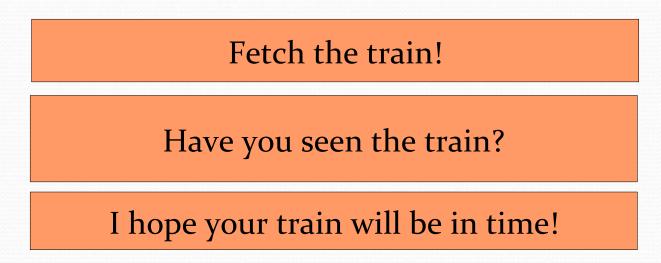
If the train arrives late and there are no taxis, John is late at his meeting.

John is not late at his meeting.

There are taxis.

The Language of Logic

- Logic: symbolic language for making declarative statements about the state of the world
 - statements which are not declarative :



The Language of Logic

- Logic: symbolic language for making declarative statements about the state of the world
 - symbolic language: we will use symbols to express our beliefs about the world

$$p =$$
The train arrives late. $q =$ There are taxis. $r =$ John is late at his meeting. $\rightarrow r =$ If the train arrives late and
there are no taxis,
John is late at his meeting.

Allows for formal specification:

• of what we know (knowledge representation)

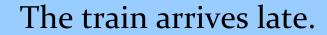
The train arrives late.

If the train arrives late and there are no taxis, John is late at his meeting.

• of what we want to achieve

John is not late at his meeting.

- Allows for reasoning:
 - drawing conclusions from observations



There are no taxis.

John is late at his meeting.

Red light detected.

Road detected.

Pedestrian crossing detected.

- Allows for reasoning:
 - finding inconsistencies in our knowledge

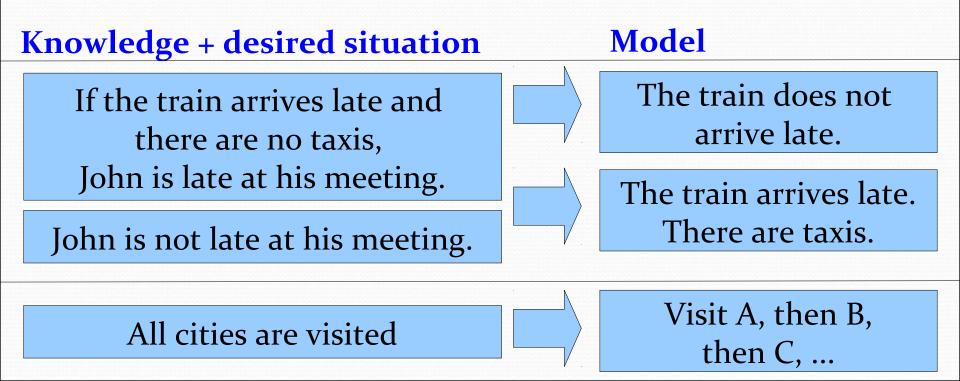
The train arrives late.	There are no taxis.	John is not late at
If the train arrives late and there are no taxis, John is late at his meeting.		his meeting.

Program A terminates. Program B terminates.

If program A terminates and program B terminates, program C also terminates.

Program C does not terminate.

- Allows for reasoning:
 - finding models (worlds in which a desired situation is true)



Propositional logic

- <u>Well-formed formulas</u> in propositional logic are obtained by using the following construction rules, and only these rules, a finite number of times:
 - propositional atoms $p, q, \ldots, p_1, p_2, \ldots$ are well-formed formulas
 - if ϕ is a well-formed formula, then so is $(\neg \phi)$
 - if ϕ and ψ are well-formed formulas, then so is $(\phi \land \psi)$
 - if ϕ and ψ are well-formed formulas, then so is $(\phi \lor \psi)$
 - if ϕ and ψ are well-formed formulas, then so is $(\phi
 ightarrow \psi)$

$$\neg, \land, \lor, \rightarrow$$
 are called *connectives*

Propositional logic

- Examples of well-formed formulas: $\begin{array}{l} ((p \to q) \land (p \to \neg q)) \\ (((p \lor q) \lor (\neg r)) \land ((\neg p) \lor r)) \\ (((\neg p) \land q) \to (p \land (q \lor (\neg r)))) \end{array}$
- Examples of badly-formed formulas:

$$\begin{aligned} &((p \leftarrow q) \land (\neg r)) \\ &((((p \land q) \lor r) \\ &((P \cup Q) \lor R) \end{aligned}$$

Propositional logic

 Notational convenience: we often drop (...) based on the precedence between operators: ¬(highest), ∧∨ (equal), → (lowest)

$$p \wedge q \rightarrow \neg r \lor s \iff ((p \wedge q) \rightarrow ((\neg r) \lor s))$$
$$p \rightarrow q \wedge r \rightarrow t \iff (p \rightarrow ((q \wedge r) \rightarrow t))$$

Implication is right associative

However, formulas in this notation are **not** well-formed!

Semantics of Propositional logic

• A *valuation* or *interpretation* of a formula ϕ is an assignment of each propositional atom in ϕ to a truth value

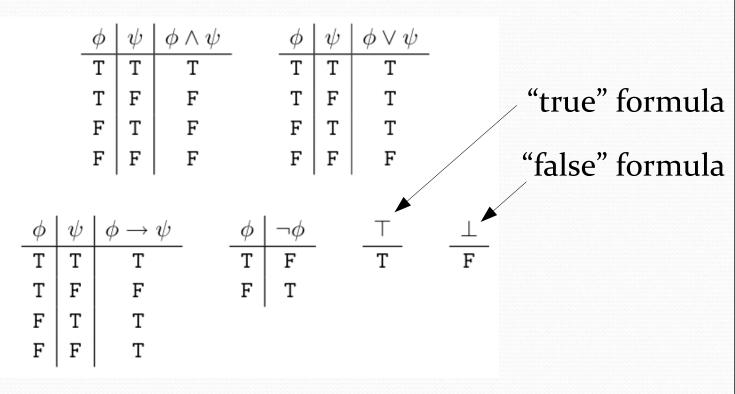
• A *truth value* is a value in the domain {true, false} or {T,F}

4 valuations for the formula $p \vee \neg q$:

р	q
Т	Т
Т	F
F	Т
F	F

Evaluating formulas

 The truth value of a formula for a given valuation is determined using *truth tables* for the connectives



Evaluating formulas

4 valuations for the formula $\ p \lor \neg q$:		
р	q	Truth value formula
Т	Т	т
Т	F	Т
F	Т	F
F	F	Т

Semantic entailment

• If, for all valuations in which all $\phi_1, \phi_2, \dots, \phi_n$ evaluate to T, ψ evaluates to T as well, we say that

 $\phi_1, \phi_2, \dots, \phi_n \models \psi$

holds and that $\phi_1, \phi_2, \ldots, \phi_n$ semantically entail ψ

р	q	q	$\models (p \land q) \lor \neg p$
Т	Т	Т	т
Т	F	F	F
F	Т	Т	Т
F	F	F	Т

Semantic entailment

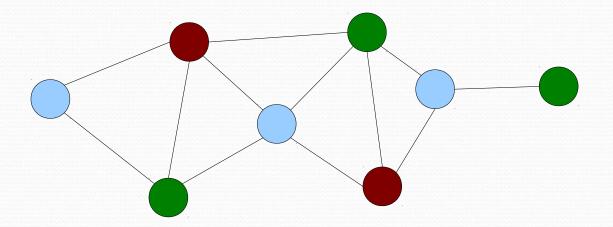
• If $\top \models \phi_1, \phi_2, \dots, \phi_n$ then $\phi_1, \phi_2, \dots, \phi_n$ are said to be a **<u>tautology</u>**

• If
$$\phi_1, \phi_2, \dots, \phi_n \models \bot$$
 then $\phi_1, \phi_2, \dots \phi_n$ are said to be a contradiction

$$(p \to q) \lor (p \land \neg q)$$
 is a tautology
 $(p \to q) \land (p \land \neg q)$ is a contradiction

If there is a valuation that makes a formula true, the formula is said to be **satisfiable** (i.e. there is no contradiction)

• Example: graph coloring



Given a graph *G* and a parameter *k* **Find** a color assignment to each node **Such that**

- no two adjacent nodes have the same color
- not more than *k* colors are used

- We can encode this problem as a satisfiability (or entailment) problem, by creating atoms and formulas based on the graph
 - for each node, create k atoms p_{ic} indicating that node i has color c
 - for each node, create a formula $\phi_i = p_{i1} \lor p_{i2} \lor \cdots \lor p_{ik}$ indicating that each node *i* must have a color
 - for each node and different pair of colors, create a formula

$$\phi_{ic_1c_2}' = \neg (p_{ic_1} \land p_{ic_2})$$

indicating a node may not have more than 1 color

 We can encode this problem as a satisfiability (or entailment) problem, by creating atoms and formulas based on the graph

• ...

• for each edge, create *k* formulas

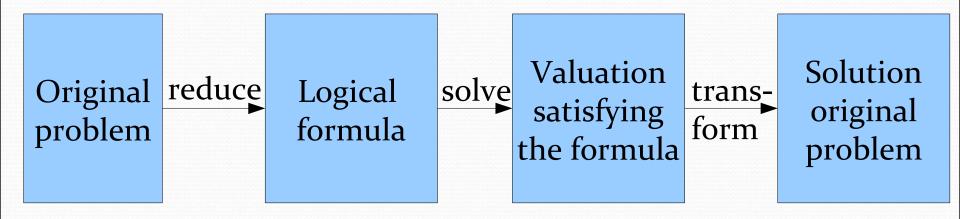
 $\phi_{ijc} = \neg (p_{ic} \land p_{jc})$

indicating that a pair connected nodes *i* and *j* may not both have color *c* at the same time

• Assume we wish to color this graph for k = 3 $\phi_1 = p_{11} \lor p_{12} \lor p_{13}$ $\phi'_{112} = \neg(p_{11} \land p_{12})$... $\phi_2 = p_{21} \lor p_{22} \lor p_{23}$ $\phi'_{212} = \neg(p_{21} \land p_{22})$... $\phi_3 = p_{31} \lor p_{32} \lor p_{33}$ $\phi'_{312} = \neg(p_{31} \land p_{32})$... $\phi_{121} = \neg(p_{11} \land p_{21}) \phi_{122} = \neg(p_{12} \land p_{22}) \phi_{123} = \neg(p_{13} \land p_{23})$ $\phi_{131} = \neg(p_{11} \land p_{31}) \phi_{132} = \neg(p_{12} \land p_{32}) \phi_{133} = \neg(p_{13} \land p_{33})$ $\phi_{231} = \neg(p_{21} \land p_{31}) \phi_{232} = \neg(p_{22} \land p_{32}) \phi_{233} = \neg(p_{23} \land p_{33})$ If this holds:

 $\phi_1, \phi_2, \phi_3, \phi_{121}, \phi_{122}, \phi_{123}, \phi_{131}, \phi_{132}, \phi_{133}, \phi_{231}, \phi_{232}, \phi_{233} \models \bot$ there is no coloring. However, there is a coloring; set to T: p_{11}, p_{22}, p_{33} set to F: $p_{12}, p_{13}, p_{21}, p_{23}, p_{31}, p_{32}$

 General idea: reduce a constraint satisfaction problem to a satisfiability problem



- How to decide whether one formula semantically entails another?
- If the number of atoms is *n*, the number of possible valuations is 2ⁿ → enumerating all valuations is usually not feasible to prove entailment.
- Two solutions:
 - finding proofs using syntactic entailment *
 - SAT solvers for specific types of formulas

*: rarely used in computers, but used by humans

Syntactic entailment & Natural deduction

 Essentially, we will introduce a number of proof rules (the proof rules of *natural deduction*) that allow to derive new formulas from old formulas. We say that

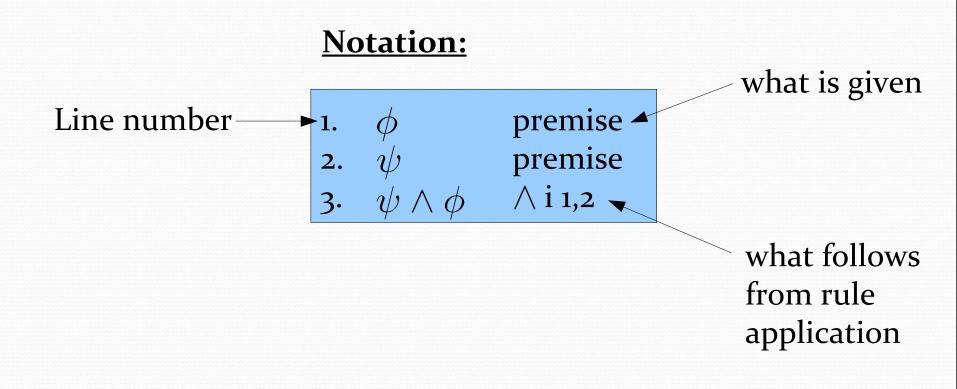
 $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ holds and that $\phi_1, \phi_2, \dots, \phi_n$ <u>syntactically entail</u> formula ψ .

- It can be shown that these rules are
 - **<u>sound</u>**: if $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ then $\phi_1, \phi_2, \ldots, \phi_n \models \psi$

• <u>complete</u>: if $\phi_1, \phi_2, \dots, \phi_n \models \psi$ then $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$

Natural deduction: And-introduction

• If ψ and ϕ are true, then $\psi \wedge \phi$ is true



Natural deduction: And-elimination

If ψ ∧ φ is true, then φ is true
If ψ ∧ φ is true, then ψ is true

1.
$$\psi \wedge \phi$$
premise2. ϕ $\wedge e_1 1$ 3. ψ $\wedge e_2 1$

Natural deduction: And-example

Proof that:
$$p \land q, r \vdash q \land r$$

1.	$p \wedge q$	premise
2.	r	premise
3.	q	$\wedge e_{1}^{1}$
4.	$q \wedge r$	\wedge i 2, 3

Natural deduction: Double negation

If φ is true, then ¬¬φ is true
If ¬¬φ is true, then φ is true

1. ϕ premise1. $\neg \neg \phi$ premise2. $\neg \neg \phi$ $\neg \neg i1$ 2. ϕ $\neg \neg e1$

Natural deduction: Implication elimination

• If
$$\psi$$
 and $\psi \rightarrow \phi$ are true, then ϕ is true

1.
$$\psi$$
premise2. $\psi \rightarrow \phi$ premise3. ϕ \rightarrow e 1,2

Now prove that $p, p \to q, p \to (q \to r) \vdash r$

Natural deduction: Modus tolens

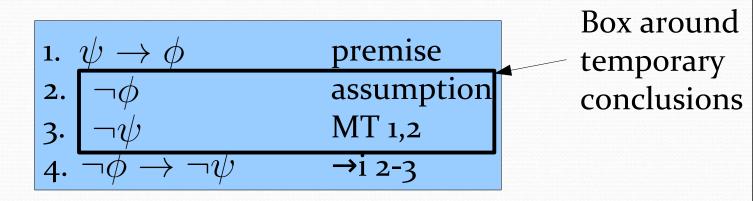
• If
$$eg \phi$$
 and $\psi o \phi$ are true, then $eg \psi$ is true

1.
$$\neg \phi$$
premise2. $\psi \rightarrow \phi$ premise3. $\neg \psi$ MT 1,2

Now prove that $p \to (q \to r), p, \neg r \vdash \neg q$

Natural deduction: Implication introduction

• If under the assumption that ϕ is true, also ψ is true, then $\phi \to \psi$



Now prove that $\vdash (q \to r) \to ((\neg q \to \neg p) \to (p \to r))$ $p \land q \to r \vdash p \to (q \to r)$

Natural deduction: Or-introduction

• If ψ is true, then $\psi \lor \phi$ is true

1.
$$\phi$$
premise2. $\psi \lor \phi$ \lor i 1

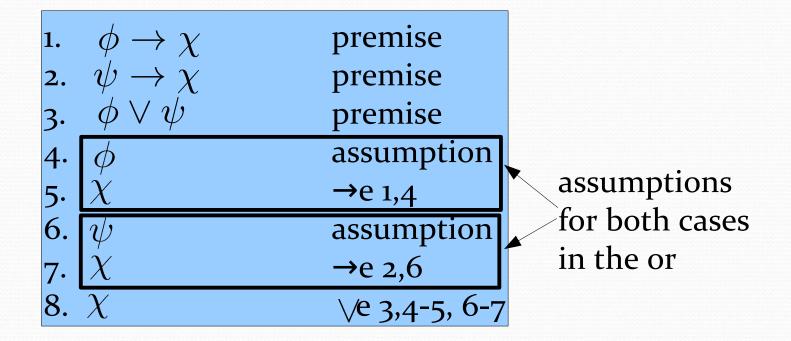
Natural deduction: Or-elimination

If all of these conditions are true:

- ullet under the assumption that arphi is true, χ is true
- ullet under the assumption that ψ is true, χ is true
- formula $\phi \lor \psi$ is true

then χ is true

Natural deduction: Or-elimination

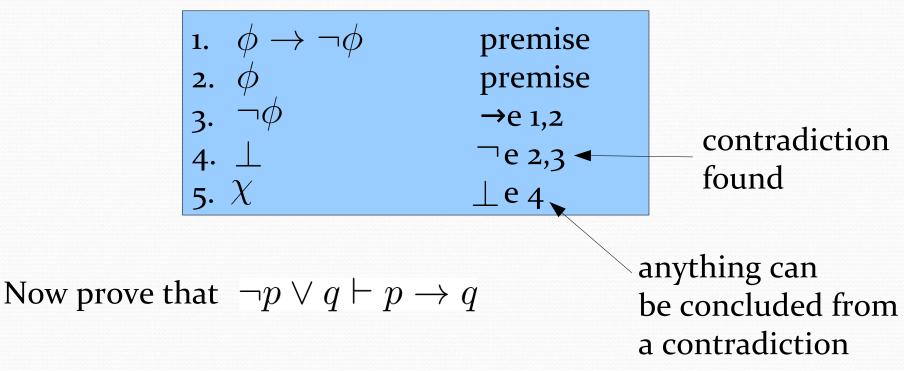


Now prove that $q \to r \vdash p \lor q \to p \lor r$ $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$

Natural deduction:

Not-elimination

- If ϕ and $\neg \phi$ are true, then the formula is a contradiction
- One can conclude anything from a contradiction



Natural deduction:

Not-introduction

• If the assumption that ϕ is true leads to a contradiction, then $\neg \phi$ is true

1.	$\phi \rightarrow \neg \phi$	premise
2.	ϕ	assumption
3.	$ eg \phi$	→i 1,2
4.	⊥	¬e 2,3
5٠	$\neg \phi$	¬i 2-4

Now prove that $p \to q, p \to \neg q \vdash \neg p$

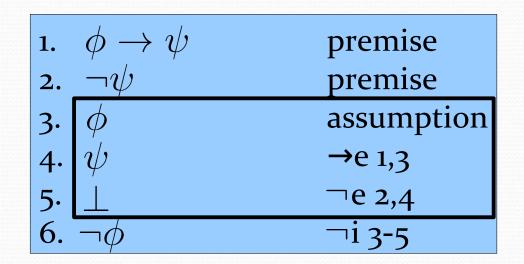
Natural deduction:

Overview

- We saw rules for
 - And-introduction, and-elimination
 - Or-introduction, or-elimination
 - Not-introduction, not-elimination
 - Implication-introduction, implication-elimination
 - Double negation
 - Modus tolens

the three latter rules are actually redundant

Natural deduction: "Emulating" modus tolens



Natural deduction: "Emulating" double negation

